吴裕雄--天生自然 R语言开发学习:时间序列(续一)
2020-12-13 06:23
标签:ast tar nil 语言 cti sse inf ado mode 吴裕雄--天生自然 R语言开发学习:时间序列(续一) 标签:ast tar nil 语言 cti sse inf ado mode 原文地址:https://www.cnblogs.com/tszr/p/11176266.html#-----------------------------------------#
# R in Action (2nd ed): Chapter 15 #
# Time series #
# requires forecast, tseries packages #
# install.packages("forecast", "tseries") #
#-----------------------------------------#
par(ask=TRUE)
# Listing 15.1 - Creating a time series object in R
sales ,
22, 31, 40, 29, 25, 21, 22, 54, 31, 25, 26, 35)
tsales )
tsales
plot(tsales)
start(tsales)
end(tsales)
frequency(tsales)
tsales.subset ))
tsales.subset
# Listing 15.2 - Simple moving averages
library(forecast)
opar TRUE)
par(mfrow=c(2,2))
ylim c(min(Nile), max(Nile))
plot(Nile, main="Raw time series")
plot(ma(Nile, 3), main="Simple Moving Averages (k=3)", ylim=ylim)
plot(ma(Nile, 7), main="Simple Moving Averages (k=7)", ylim=ylim)
plot(ma(Nile, 15), main="Simple Moving Averages (k=15)", ylim=ylim)
par(opar)
# Listing 15.3 - Seasonal decomposition using slt()
plot(AirPassengers)
lAirPassengers log(AirPassengers)
plot(lAirPassengers, ylab="log(AirPassengers)")
fit "period")
plot(fit)
fit$time.series
exp(fit$time.series)
par(mfrow=c(2,1))
library(forecast)
monthplot(AirPassengers, xlab="", ylab="")
seasonplot(AirPassengers, year.labels="TRUE", main="")
par(opar)
# Listing 15.4 - Simple exponential smoothing
library(forecast)
fit FALSE)
fit
forecast(fit, 1)
plot(forecast(fit, 1), xlab="Year",
ylab=expression(paste("Temperature (", degree*F,")",)),
main="New Haven Annual Mean Temperature")
accuracy(fit)
# Listing 15.5 - Exponential smoothing with level, slope, and seasonal components
fit HoltWinters(log(AirPassengers))
fit
accuracy(fit)
pred )
pred
plot(pred, main="Forecast for Air Travel",
ylab="Log(AirPassengers)", xlab="Time")
pred$mean exp(pred$mean)
pred$lower exp(pred$lower)
pred$upper exp(pred$upper)
p cbind(pred$mean, pred$lower, pred$upper)
dimnames(p)[[2]] "mean", "Lo 80", "Lo 95", "Hi 80", "Hi 95")
p
# Listing 15.6 - Automatic exponential forecasting with ets()
library(forecast)
fit ets(JohnsonJohnson)
fit
plot(forecast(fit), main="Johnson and Johnson Forecasts",
ylab="Quarterly Earnings (Dollars)", xlab="Time")
# Listing 15.7 - Transforming the time series and assessing stationarity
library(forecast)
library(tseries)
plot(Nile)
ndiffs(Nile)
dNile diff(Nile)
plot(dNile)
adf.test(dNile)
# Listing 15.8 - Fit an ARIMA model
fit ))
fit
accuracy(fit)
# Listing 15.9 - Evaluating the model fit
qqnorm(fit$residuals)
qqline(fit$residuals)
Box.test(fit$residuals, type="Ljung-Box")
# Listing 15.10 - Forecasting with an ARIMA model
forecast(fit, 3)
plot(forecast(fit, 3), xlab="Year", ylab="Annual Flow")
# Listing 15.11 - Automated ARIMA forecasting
library(forecast)
fit auto.arima(sunspots)
fit
forecast(fit, 3)
accuracy(fit)
上一篇:java重写和重载
下一篇:java----封装思想