吴裕雄--天生自然 R语言开发学习:处理缺失数据的高级方法(续一)

2020-12-13 06:24

阅读:248

标签:data   code   which   cti   sum   case   package   obs   png   

技术图片

技术图片

技术图片

技术图片

技术图片

#-----------------------------------#
# R in Action (2nd ed): Chapter 18  #
# Advanced methods for missing data #
# requires packages VIM, mice       #
# install.packages(c("VIM", mice))  #
#-----------------------------------#

par(ask=TRUE)


# load the dataset
data(sleep, package="VIM")


# list the rows that do not have missing values
sleep[complete.cases(sleep),]


# list the rows that have one or more missing values
sleep[!complete.cases(sleep),]


# tabulate missing values patters
library(mice)
md.pattern(sleep)


# plot missing values patterns
library("VIM")
aggr(sleep, prop=FALSE, numbers=TRUE)
matrixplot(sleep)
marginplot(sleep[c("Gest","Dream")], pch=c(20), 
           col=c("darkgray", "red", "blue"))


# use correlations to explore missing values
x is.na(sleep)))
head(sleep, n=5)
head(x, n=5)
y 0)]
cor(y)
cor(sleep, y, use="pairwise.complete.obs")


# complete case analysis (listwise deletion)
options(digits=1)
cor(na.omit(sleep))
fit na.omit(sleep))
summary(fit)


# multiple imputation
options(digits=3)
library(mice)
data(sleep, package="VIM")
imp )
fit  Gest))
pooled  pool(fit)
summary(pooled)
imp

 

吴裕雄--天生自然 R语言开发学习:处理缺失数据的高级方法(续一)

标签:data   code   which   cti   sum   case   package   obs   png   

原文地址:https://www.cnblogs.com/tszr/p/11177656.html


评论


亲,登录后才可以留言!